Functional role of G9a-induced histone methylation in small heterodimer partner-mediated transcriptional repression.
نویسندگان
چکیده
Site-specific modification of nucleosomal histones plays a central role in the formation of transcriptionally active and inactive chromatin structures. These modifications may serve as specific recognition motifs for chromatin proteins, which act as a signal for the adoption of the appropriate regulatory responses. Here, we show that the orphan nuclear receptor SHP (small heterodimer partner), a coregulator that inhibits the activity of several nuclear receptors, can associate with unmodified and lysine 9-methylated histone-3, but not with the acetylated protein. The naturally occurring SHP mutant (R213C), which exhibits decreased transrepression potential, interacts less avidly with K9-methylated histone 3. We demonstrate that SHP can functionally interact with histone deacetylase-1 and the G9a methyltransferase and that it is localized exclusively in nuclease-sensitive euchromatin. The results point to the involvement of a multistep mechanism in SHP-dependent transcriptional repression, which includes histone deacetylation, followed by H3-K9 methylation and stable association of SHP itself with chromatin.
منابع مشابه
Automethylation of G9a and its implication in wider substrate specificity and HP1 binding
Methylation of lysine residues on histones participates in transcriptional gene regulation. Lysine 9 methylation of histone H3 is a transcriptional repression signal, mediated by a family of SET domain containing AdoMet-dependent enzymes. G9a methyltransferase is a euchromatic histone H3 lysine 9 methyltransferase. Here, G9a is shown to methylate other cellular proteins, apart from histone H3, ...
متن کاملG9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis.
Covalent modification of histone tails is crucial for transcriptional regulation, mitotic chromosomal condensation, and heterochromatin formation. Histone H3 lysine 9 (H3-K9) methylation catalyzed by the Suv39h family proteins is essential for establishing the architecture of pericentric heterochromatin. We recently identified a mammalian histone methyltransferase (HMTase), G9a, which has stron...
متن کاملH3K9 methyltransferase G9a negatively regulates UHRF1 transcription during leukemia cell differentiation
Histone H3K9 methyltransferase (HMTase) G9a-mediated transcriptional repression is a major epigenetic silencing mechanism. UHRF1 (ubiquitin-like with PHD and ring finger domains 1) binds to hemimethylated DNA and plays an essential role in the maintenance of DNA methylation. Here, we provide evidence that UHRF1 is transcriptionally downregulated by H3K9 HMTase G9a. We found that increased expre...
متن کاملLocalized domains of G9a-mediated histone methylation are required for silencing of neuronal genes.
Negative regulation of transcription is an important strategy in establishing and maintaining cell-specific gene expression patterns. Many neuronal genes are subject to active transcriptional repression outside the nervous system to establish neuronal specificity. NRSF/REST has been demonstrated to regulate at least 30 genes and contribute to their neuronal targeting by repressing transcription...
متن کاملThe zinc finger proteins ZNF644 and WIZ regulate the G9a/GLP complex for gene repression
The G9a/GLP complex mediates mono- and dimethylation of Lys9 of histone H3 at specific gene loci, which is associated with transcriptional repression. However, the molecular mechanism by which the G9a/GLP complex is targeted to the specific gene loci for H3K9 methylation is unclear. In this study, with unbiased protein affinity purification, we found ZNF644 and WIZ as two core subunits in the G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 20 شماره
صفحات -
تاریخ انتشار 2004